Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 52(15): 8272-8282, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-29947506

RESUMO

Knowledge of the factors controlling the diverse chemical emissions of common environmental bacteria and fungi is crucial because they are important signal molecules for these microbes that also could influence humans. We show here not only a high diversity of mVOCs but that their abundance can differ greatly in different environmental contexts. Microbial volatiles exhibit dynamic changes across microbial growth phases, resulting in variance of composition and emission rate of species-specific and generic mVOCs. In vitro experiments documented emissions of a wide range of mVOCs (>400 different chemicals) at high time resolution from diverse microbial species grown under different controlled conditions on nutrient media, or residential structural materials ( N = 54, Ncontrol = 23). Emissions of mVOCs varied not only between microbial taxa at a given condition but also as a function of life stage and substrate type. We quantify emission factors for total and specific mVOCs normalized for respiration rates to account for the microbial activity during their stationary phase. Our VOC measurements of different microbial taxa indicate that a variety of factors beyond temperature and water activity, such as substrate type, microbial symbiosis, growth phase, and lifecycle affect the magnitude and composition of mVOC emission.


Assuntos
Compostos Orgânicos Voláteis , Bactérias , Fungos , Humanos
2.
Front Microbiol ; 8: 2436, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29276506

RESUMO

Plant injury is inherent to the production and processing of fruit and vegetables. The opportunistic colonization of damaged plant tissue by human enteric pathogens may contribute to the occurrence of outbreaks of foodborne illness linked to produce. Escherichia coli O157:H7 (EcO157) responds to physicochemical stresses in cut lettuce and lettuce lysates by upregulation of several stress response pathways. We investigated the tolerance of EcO157 to osmotic stress imposed by the leakage of osmolytes from injured lettuce leaf tissue. LC-MS analysis of bacterial osmoprotectants in lettuce leaf lysates and wound washes indicated an abundant natural pool of choline, but sparse quantities of glycine betaine and proline. Glycine betaine was a more effective osmoprotectant than choline in EcO157 under osmotic stress conditions in vitro. An EcO157 mutant with a deletion of the betTIBA genes, which are required for biosynthesis of glycine betaine from imported choline, achieved population sizes twofold lower than those of the parental strain (P < 0.05) over the first hour of colonization of cut lettuce in modified atmosphere packaging (MAP). The cell concentrations of the betTIBA mutant also were 12-fold lower than those of the parental strain (P < 0.01) when grown in hypertonic lettuce lysate, indicating that lettuce leaf cellular contents provide choline for osmoprotection of EcO157. To demonstrate the utilization of available choline by EcO157 for osmoadaptation in injured leaf tissue, deuterated (D-9) choline was introduced to wound sites in MAP lettuce; LC-MS analysis revealed the conversion of D9-choline to D-9 glycine betaine in the parental strain, but no significant amounts were observed in the betTIBA mutant. The EcO157 ΔbetTIBA-ΔotsBA double mutant, which is additionally deficient in de novo synthesis of the compatible solute trehalose, was significantly less fit than the parental strain after their co-inoculation onto injured lettuce leaves and MAP cut lettuce. However, its competitive fitness followed a different time-dependent trend in MAP lettuce, likely due to differences in O2 content, which modulates betTIBA expression. Our study demonstrates that damaged lettuce leaf tissue does not merely supply EcO157 with substrates for proliferation, but also provides the pathogen with choline for its survival to osmotic stress experienced at the site of injury.

3.
Mol Microbiol ; 99(6): 1080-98, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26713670

RESUMO

Pseudomonas syringae pv. syringae cell densities fluctuate regularly during host plant colonization. Previously we identified nine genes dependent on the quorum-sensing-associated luxR homolog ahlR during epiphytic and apoplastic stages of host colonization. Yet their contributions to host colonization remain obscure, despite ahlR regulon presence within and beyond the P. syringae pan-genome. To elucidate AhIR regulon member functions, we characterized their regulation, interactions with each other, and contributions to the metabolome. We report Psyr_1625, encoding a functional pyruvate deydrogenase-E1 subunit PdhQ, is required to prevent the accumulation of pyruvate in rich media. Furthermore it is exquisitely regulated by both repression of its own promoter by QrpR within a novel clade of the MarR regulator family, and co-transcription on a 5kb transcript originating from the AhlR-driven ahlI promoter, that reads over ahlR and qrpR. Metabolites accumulated during expression of the second AhlR-driven operon (Psyr_1620-1616, paoABCDE), only in a pdhQ mutant background, in addition to pyruvate, are herein associated with derepression of QrpR-repressed pdhQ. AHL signaling, QrpR, and transcriptional read-through events integrate to ensure AHL-dependent expression of a novel metabolism in anticipation of environmental stress, while minimizing endogenously generated cytotoxicity.


Assuntos
Pseudomonas syringae/genética , Pseudomonas syringae/metabolismo , Percepção de Quorum/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Doenças das Plantas/microbiologia , Regiões Promotoras Genéticas , Regulon , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
mBio ; 5(5): e01683-14, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25182327

RESUMO

UNLABELLED: The plant pathogen Pseudomonas syringae pv. syringae B728a grows and survives on leaf surfaces and in the leaf apoplast of its host, bean (Phaseolus vulgaris). To understand the contribution of distinct regulators to B728a fitness and pathogenicity, we performed a transcriptome analysis of strain B728a and nine regulatory mutants recovered from the surfaces and interior of leaves and exposed to environmental stresses in culture. The quorum-sensing regulators AhlR and AefR influenced few genes in planta or in vitro. In contrast, GacS and a downstream regulator, SalA, formed a large regulatory network that included a branch that regulated diverse traits and was independent of plant-specific environmental signals and a plant signal-dependent branch that positively regulated secondary metabolite genes and negatively regulated the type III secretion system. SalA functioned as a central regulator of iron status based on its reciprocal regulation of pyoverdine and achromobactin genes and also sulfur uptake, suggesting a role in the iron-sulfur balance. RetS functioned almost exclusively to repress secondary metabolite genes when the cells were not on leaves. Among the sigma factors examined, AlgU influenced many more genes than RpoS, and most AlgU-regulated genes depended on RpoN. RpoN differentially impacted many AlgU- and GacS-activated genes in cells recovered from apoplastic versus epiphytic sites, suggesting differences in environmental signals or bacterial stress status in these two habitats. Collectively, our findings illustrate a central role for GacS, SalA, RpoN, and AlgU in global regulation in B728a in planta and a high level of plasticity in these regulators' responses to distinct environmental signals. IMPORTANCE: Leaves harbor abundant microorganisms, all of which must withstand challenges such as active plant defenses and a highly dynamic environment. Some of these microbes can influence plant health. Despite knowledge of individual regulators that affect the fitness or pathogenicity of foliar pathogens, our understanding of the relative importance of various global regulators to leaf colonization is limited. Pseudomonas syringae strain B728a is a plant pathogen and a good colonist of both the surfaces and interior of leaves. This study used global transcript profiles of strain B728a to investigate the complex regulatory network of putative quorum-sensing regulators, two-component regulators, and sigma factors in cells colonizing the leaf surface and leaf interior under stressful in vitro conditions. The results highlighted the value of evaluating these networks in planta due to the impact of leaf-specific environmental signals and suggested signal differences that may enable cells to differentiate surface versus interior leaf habitats.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Folhas de Planta/microbiologia , Pseudomonas syringae/genética , Percepção de Quorum/genética , Regulon/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Deleção de Genes , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Genes Reguladores , Doenças das Plantas/microbiologia , Pseudomonas syringae/crescimento & desenvolvimento , RNA Bacteriano/genética , RNA Bacteriano/isolamento & purificação , Fator sigma/genética , Fator sigma/metabolismo , Estresse Fisiológico
5.
Proc Natl Acad Sci U S A ; 110(5): E425-34, 2013 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-23319638

RESUMO

Some strains of the foliar pathogen Pseudomonas syringae are adapted for growth and survival on leaf surfaces and in the leaf interior. Global transcriptome profiling was used to evaluate if these two habitats offer distinct environments for bacteria and thus present distinct driving forces for adaptation. The transcript profiles of Pseudomonas syringae pv. syringae B728a support a model in which leaf surface, or epiphytic, sites specifically favor flagellar motility, swarming motility based on 3-(3-hydroxyalkanoyloxy) alkanoic acid surfactant production, chemosensing, and chemotaxis,indicating active relocation primarily on the leaf surface. Epiphytic sites also promote high transcript levels for phenylalanine degradation, which may help counteract phenylpropanoid-based defenses before leaf entry. In contrast, intercellular, or apoplastic,sites favor the high-level expression of genes for GABA metabolism (degradation of these genes would attenuate GABA repression of virulence) and the synthesis of phytotoxins, two additional secondary metabolites, and syringolin A. These findings support roles for these compounds in virulence, including a role for syringolin A in suppressing defense responses beyond stomatal closure. A comparison of the transcriptomes from in planta cells and from cells exposed to osmotic stress, oxidative stress, and iron and nitrogen limitation indicated that water availability, in particular,was limited in both leaf habitats but was more severely limited in the apoplast than on the leaf surface under the conditions tested. These findings contribute to a coherent model of the adaptations of this widespread bacterial phytopathogen to distinct habitats within its host.


Assuntos
Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Folhas de Planta/metabolismo , Pseudomonas syringae/genética , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Parede Celular/microbiologia , Análise por Conglomerados , Ecossistema , Espaço Extracelular/metabolismo , Espaço Extracelular/microbiologia , Flagelos/metabolismo , Flagelos/fisiologia , Genes Bacterianos/genética , Interações Hospedeiro-Patógeno , Movimento , Nitrogênio/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Peptídeos Cíclicos/metabolismo , Fenilalanina/metabolismo , Epiderme Vegetal/metabolismo , Epiderme Vegetal/microbiologia , Folhas de Planta/microbiologia , Pseudomonas syringae/patogenicidade , Pseudomonas syringae/fisiologia , Virulência/genética , Água/metabolismo
7.
Mol Plant Microbe Interact ; 19(3): 227-39, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16570653

RESUMO

Two N-acyl-homoserine lactone (acyl-HSL) synthase genes, lasI from Pseudomonas aeruginosa and yenI from Yersinia enterocolitica, were introduced into tobacco, individually and in combination. Liquid chromatograph-tandem mass spectrometry and thin-layer chromatography confirmed products of lasI and yenI activity in single and cotransformants. Cotransformants expressing plastid-localized LasI and YenI synthases produced the major acyl-HSLs for each synthase in all tissues tested. Total acyl-HSL signals accumulated in leaf tissue up to 3 pmol/mg of fresh weight, half as much in stem tissue, and approximately 10-fold less in root tissues. Acyl-HSLs were present in aqueous leaf washes from greenhouse-grown transgenic plants. Transgenic lines grown for 14 days under axenic conditions produced detectable levels of acyl-HSLs in root exudates. Ethyl acetate extractions of rhizosphere and nonrhizosphere soil from transgenically grown plants contained active acyl-HSLs, whereas plant-free soil or rhizosphere and nonrhizosphere soil from wild-type plants lacked detectable amounts of acyl-HSLs. This work shows that bioactive acyl-HSLs are exuded from leaves and roots and accumulate in the phytosphere of plants engineered to produce acyl-HSLs. These data further suggest that plants that are bioengineered to synthesize acyl-HSLs can foster beneficial plant-bacteria communications or deter deleterious interactions. Therefore, it is feasible to use bioengineered plants to supplement soils with specific acyl-HSLs to modulate bacterial phenotypes and plant-associated bacterial community structures.


Assuntos
4-Butirolactona/análogos & derivados , Nicotiana/metabolismo , Raízes de Plantas/metabolismo , Solo/análise , 4-Butirolactona/química , 4-Butirolactona/metabolismo , Estrutura Molecular , Folhas de Planta/genética , Folhas de Planta/metabolismo , Raízes de Plantas/genética , Plantas Geneticamente Modificadas , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Nicotiana/genética , Yersinia enterocolitica/genética , Yersinia enterocolitica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...